BSS138LT1

Preferred Device

Power MOSFET 200 mA, 50 V

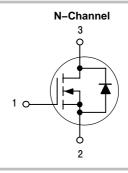
N-Channel SOT-23

Typical applications are DC-DC converters, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

Features

- Low Threshold Voltage (V_{GS(th)}: 0.5 V-1.5 V) Makes it Ideal for Low Voltage Applications
- Miniature SOT-23 Surface Mount Package Saves Board Space
- Pb-Free Packages are Available

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	50	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	± 20	Vdc
Drain Current - Continuous @ T _A = 25°C - Pulsed Drain Current (t _p ≤ 10 μs)	I _D I _{DM}	200 800	mA
Total Power Dissipation @ T _A = 25°C	P _D	225	mW
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to 150	°C
Thermal Resistance, Junction–to–Ambient	$R_{\theta JA}$	556	°C/W
Maximum Lead Temperature for Soldering Purposes, for 10 seconds	TL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ON Semiconductor®

200 mA, 50 V $R_{DS(on)} = 3.5 Ω$

SOT-23 CASE 318 STYLE 21

J1 = Device Code M = Date Code* ■ Pb–Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

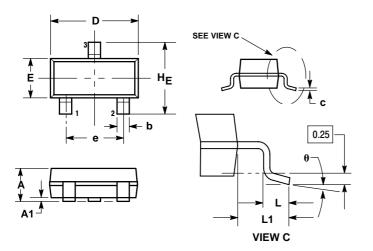
Device	Package	Shipping [†]
BSS138LT1	SOT-23	3000 Tape & Reel
BSS138LT1G	SOT-23 (Pb-Free)	3000 Tape & Reel
BSS138LT3	SOT-23	10,000 Tape & Reel
BSS138LT3G	SOT-23 (Pb-Free)	10,000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

BSS138LT1

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

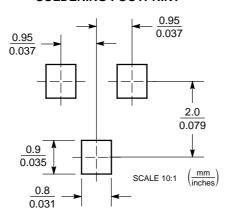

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 250 µAdc)		V _{(BR)DSS}	50	_	_	Vdc
Zero Gate Voltage Drain Current $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 50 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$		I _{DSS}	- -	- -	0.1 0.5	μAdc
Gate-Source Leakage Current (VGs	I _{GSS}	_	_	±0.1	μAdc	
ON CHARACTERISTICS (Note 1)						
Gate-Source Threshold Voltage $(V_{DS} = V_{GS}, I_D = 1.0 \text{ mAdc})$	V _{GS(th)}	0.5	_	1.5	Vdc	
Static Drain-to-Source On-Resistance $ (V_{GS}=2.75~Vdc,~I_D<200~mAdc,~T_A=-40^{\circ}C~to~+85^{\circ}C) \\ (V_{GS}=5.0~Vdc,~I_D=200~mAdc) $		r _{DS(on)}	- -	5.6 -	10 3.5	Ω
Forward Transconductance (V _{DS} = 25 Vdc, I _D = 200 mAdc, f = 1.0 kHz)		9fs	100	-	-	mmhos
DYNAMIC CHARACTERISTICS						
Input Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C _{iss}	-	40	50	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C _{oss}	-	12	25	
Transfer Capacitance	$(V_{DG} = 25 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C _{rss}	-	3.5	5.0	
SWITCHING CHARACTERISTICS (N	lote 2)	•		•	•	
Turn-On Delay Time	(V _{DD} = 30 Vdc, I _D = 0.2 Adc,)	t _{d(on)}	_	_	20	ns
Turn-Off Delay Time	(VDD = 30 Vdc, ID = 0.2 Adc,)	t _{d(off)}	-	-	20	

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperature.

BSS138LT1

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AN**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 4. 318–01 THRU –07 AND –09 OBSOLETE, NEW STANDARD 318–08.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
С	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
Е	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
HE	2.10	2.40	2.64	0.083	0.094	0.104

- STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.